
Adiabatic phases and group theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 2945

(http://iopscience.iop.org/0305-4470/25/10/022)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 16:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys A: Math. Gen. 25 (1992) 2945-2956. Printed in the UK 

Adiabatic phases and group theory 

J Wudka 
University of Califomia at Riverside, Depanment of Physics. Riverside, CA 92521 0113, 
USAt 

Received 20 March 1991, in h a 1  form 17 January 1992 

Abstract. The mnstmclion of the adiabatic mnneclion is studied in the case where 
the symmetry of a Hamiltonian is h k e n  explicitly bj a slowly varying penurbation. 
The type of time variation of the penurbation corresponds to the one generated by 
the symmetry p u p  of the unpenurbed Hamillonian. I1 is proven that the adiabatic 
mnneclion for this type of system is completely determined bj the group ~tmclure, up to 
a set of reduced matrix elements: systems with the Same symmetries will have adiabatic 
mnnections differing at most in these reduced matrix elements. Several examples are 
detailed. 

1. Introduction 

The description of the adiabatic approximation, as improved by Berry's formalism 
[l], provides a framework which relates a variety of subjects ranging from field-theoly 
anomalies [2] to the dynamics of an atom in a slowly wrying electromagnetic field [l]. 
In the present paper this formalism will be applied to a class of Hamiltonians which 
are of interest both phenomenologically and because of their mathematical properties. 
Such Hamiltonians consist of a time independent term H,,  invariant under a semi- 
simple compact Lie group G, together with a slowly varying perturbation, H' which 
is invariant under a subgroup 31 c G. The time variation of H' is assumed to be 
sufficiently slow for the adiabatic approximation to be valid. 

This class of Hamiltonians is characteristic of systems interacting with an external 
field. In many such cases H' is a function of a set of irreducible tensor operators 
under C [3]; we shall not, however, assume any specific form for If' and rely solely 
on the above mentioned group properties for the subsequent calculations. 

The time dependence in H' will be assumed to be generated by a (sufficiently 
slow) rotation [4j; this allows for a compact expression for the adiabatic connection. 
Moreover, as will be seen below, the adiabatic connection is uniquely determined 
up to a set of reduced matrix elements; so that models with the same group and 
degeneracies will have connections differing at most in these reduced matrix elements. 
?his fact was observed in [3] for the case of G = SU(2) ,  31 = U( 1 )  using topological 
arguments. As will be proven, this is a completely general feature which can be 
obtained using elementary group theory. 

Though several of the results derived below have appeared previously in the liter- 
ature, the method of calculation here described, together with the general expression 
for the adiabatic connection are, as far as the author is aware, new. 
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This paper is organized as follows. In the next section the group structure is 
developed to the point where an expression for the adiabatic connection amenable 
for calculations is obtained. Section 3 briefly describes some interesting types of 
degeneracies. Several examples are worked out in section 4, while comments and 
conclusions appear in the last section. 

2. Hamiltonian and adiabatic eonneetion 

As mentioned above the Hamiltonians under consideration are of the form H ,  + H'. 
H, is time independent and invariant under a compact semi-simple Lie group 8, 
while H' is time dependent and invariant under a subgroup 71 c 8. Below we will 

D(') will always denote the tth irreducible representation of 8. 
Let g be the algebra of G and h that of 'H; since G is compact, the corresponding 

structure constants are completely anti-symmetric and the Cartan metric can be taken 
to be proportional to the identity [5]. The basis for h will be denoted hy {Qv},  and 
the hasis for g - h by {Q;); small case Latin indices from the end of the alphabet, 

the alphabet, I, J ,  etc. will denote the generators of g - h. It follows that 

L-.^a_. A-"..-:.- .I.̂  __^_^_. :-.. ^^^^ :̂...̂ .I ..-.I. .I.:̂  " ._._^.___ ~. ' .I.̂  c-,, :.." 
UIlGUy U W L I I V G  "IC pLVpC1UC3 dJ3vC.laLCU WLLLI  LUW gUUp XIULLUIci, rL "IC LUlLUWnULg 

T,.?, etc. -i! denote the ge.lnerntns f9r b; ' I f i n !  htk! hdkes h.9m the m?!i!i!e of 

[Q,,Q;I = -%!IQ; (2.1) 

where no term proportional to Q, appears on the right-hand side due to the anti- 
JJ"IL"bL1J Y, L l l r  U L I U C L U l b  w I o L a I I I D ,  all" "'c(.Yac UN, vv 'n"Dc U l L Y  a,," P.6'"". 
the Jacohi identity it follows that the matrices A, a n y  a representation (reducible 
in general) of h. Therefore the Q; transform as (reducible) tensor operators under 
31. Since 8 is semi-simple, it follows that the representation carried by the A, is 
fully reducible [5]; the basis {Q;}  can then be replaced by sets of irreducible tensor 
operators under 8 [7]; this fact will be used below. 

semi-simple algebra, and n is Abelian [I. Let S and A! be the groups generated by s 
and n respectively; the irreducible representations of S will be labelled by the letters 
R, S,etc. and those of N by p, o,etc. 

Denote by T,, the anti-Hermitian generators of the unitary representation of G 
in the Hilbert space of the system, so that a group element g corresponds to an 
operator U ( g )  = e x p [ T , P ] .  Using this and the above properties of G implies that 
the generators Tu can be decomposed into 

~..--n+-. ,4 rhn r+r..rr..m m-itn-t- "m.4 ham..m rhn A c lnon  :-+- nnrl alnnh-n C v n m  
IIVII .  

Rqciring g be mmpaa a!!aws fie decomposition h = @ n; where k a 

{ Q i )  : hasis of s 

{Na}: basis of n 
{QkR'") : basis of g - h 

where, for simplicity, the symbols Q i ,  Na, etc. are used to represent both the abstract 
Lie algebra elements and their realization as operators. The previous basis of g-h has 
been replaced, as mentioned before, hy the set {QF;"}, which are irreducible tensor 
operators under S and N ( I C  labels the element of the Rth irreducible representation 
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under S) : 

12.3) 

where A(R) denotes the Rth irreducible representation of S, and the pa are real 
numbers. As previously mentioned, the irreducible representations of S will he 
labelled by the letters R,  S, etc. and those of N by p, a,etc; the letters 1 ,  k in 
the above equation denote the indices of the matrices A(R), and they also label 
the elements of the (R; p )  irreducible representation; the summation convention is 
implied. 

As mentioned in the introduction, the type of perturbations H'( 1 )  which will he 
considered are of the form i4j 

H'(1)  = m ? ) f " U ( S ) +  9 = g(1 )  d o )  = e (2.4) 

where g ( 1 )  corresponds to a given curve in g, and e is the identity in 9. The 
eigenstates of the Hamiltonian for 1 = 0, denoted by IS),  can be classified according 
to their transformation properties under S and N ,  

I.) = IR, m; m ;  C) (2.5) 

where R denotes the irreducible representation of S, m the state within this ir- 
reducible representation; n denotes a set {ma}, the eigenvalues of the N ,  (the 
generators of n); and C summarizes the remaining quantum numbers required to 
uniqueiy specify isj. 

The states of the time dependent Hamiltonian are [4] V ( g ) l s ) ,  g = g ( t ) ,  so that 
the adiabatic connection, denoted by A(Q) ,  is given by 

Ab?: =i(s'l{U(g)'dLr(g)}Is) (2.6) 

with the restriction that the states Is) and IS') are degenerate. This expression for 
A @ )  can he simplified by noting that 

where the matrices t generate me adjoint representation of c. The matrix 0 can he 

(2.8) 

expressed in terms of any (unitary) irreducible representation of g by the relation 

1 

KL 

where the normalization constant K (  is determined by 

deW 0 a = - t r{ d')( 7'") D(') (9) d D(') ( g ) )  

tr{o("(T,)tD(')(T,)} = n,6: 

Thus the evaluation of A(o) requires the matrix elements of the generators T,. 
These are trivial to obtain for the elements of s and n; for the elements of g- h, such 
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matrix elements involve the Clebsch-Gordan coefficients of N to which we now turn. 
Following Comwell and win den Broek [6] these coefficients are specified as follows: 
the product of two irreducible representations of a group, S @ S', will contain a given 
irreducible representation R a number U&, times, so that the product is expressed 
as 

(2.9) 

where x ,  ~p and $ denote the basis vectors of the corresponding irreducible repre- 
sentations; and the complex numbers 

are the Clebsch-Gordan coefficients. 
With these preliminaries the required matrix elements are given by 

(SI,"; n'; C'I Q; IS,m; n; C) = A2!m(Qi)6sls6nln6cl< 
(S',m';n'; ('IN,, IS,m;n;C) = in , ,6 , , ,~5, , ,~6~~~ 

(S', m'; n'; C'I Q'pip) IS, m; n; C) 
(2.10) 

where A(S) denotes the Sth  irreducible representation of S, and Q denotes a reduced 
matrix element and, 6,,+,,,,, vanishes unless n,+p,, = nh for all a. The (generalized) 
Wigner-Eckart theorem [6] was used in obtaining the last expression. 

Substituting these results in (2.6) gives 

L i  

(2.11) 

The range of the index v in (2.8) has been separated according to the classification 
(2.2); the labels (S, m; n;  C) refer to the state Is), while their primed counterparts 
refer to 1s'); the rest of the notation is self evident. 

Equation (211) is the main result of this paper, the following considerations will 
deal with simplifications of the above expressions under various assumptions. The 
contributions to A @ )  which appear only when S' = S and nh = n, will be labelled 
'diagonal'; the remaining terms will be called 'off-diagonal'. 
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Models having the Same group structure (and degeneracies) will have adiabatic 
connections differing only in the reduced matrix elements, so that we can talk about 
families of models whose adiabatic connections are parametrized by the Q. The terms 
Clebsch-Gordan coefficients will vanish in case the irreducible representation S' is 
not contained in S 8 R, or if, for every p, pa # nh - n, for some a; in general, 
however, these conditions are not satisfied. 

It is also worth pointing out that the same expression will be valid for non-compact 
groups in those special cases for which the generators of g - h are tensor operators 
under h It must also be noted that for non-compact groups the expression 0 in (2.8) 
must involve the Cartan metric which in this case is not proportional to the identity. 
An example where these remarks are relevant is the case where G = S O ( 3 , l )  and 
31 = S 0 ( 3 ) ,  which will he studied below. 

The expression (2.11) leads to simple results only in the special cases, the difficulty 
-U15 WL'. U. .,'U C*pC,, C"ll'ynll"Il "a " IC ,b""W" ,l,',I,M ulu..ln,W 'U,.. "L -1- 

tensor 0. The explicit expression for 0 is available only when 0 is a product of 
several SU(2)  and U(l) factors. If we then consider only these cases, then the 
determination of the reduced matrix elements is straightforwar6 N will also be a 
product of SU(2)  and U(l) factors and, therefore, the representation matrices A 
are known explicitly; such a situation will be studied below. In contrast, when G is a 
more complicated group (excluding the non-compact partners of S U(2)), no explicit 
expressions for A@)  are available. 

'Ib explicitly determine the reduced matrix elements one must first find the states 
(2.5), and then use (2.10) to determine &. ?he advantage of the procedure is 
the usual one: one needs to evaluate the matrix elements for one state in a given 
irreducible representation, the Clebsch-Gordan coefficients determine all the other 
matrix elements. The Clebsch-Gordan coefficients can be obtained using standard 
methods [6]. 

b : n n  L t h  in --I:&+ a.nl..n+:nn rrf CLn -oA...-a.4 --hi- ~Inmnn+c A n n A  nf tho 

3. Degeneracies 

The construction of the adiabatic connection requires the selection of all states corre- 
sponding to a given energy. While in many instances he structure of the degeneracies 
can be obtained by symmetry considerations, this is not always the case, and such 'un- 
explained' degeneracies are commonly labelled 'accidental'. This terminology is very 
ambiguous; for example, the special degeneracies present in the Coulomb problem 
appear because the actual symmetry group is SO(3 , l )  [5], a fact not immediately 
L.yp"U..L 111 ".I U N . U . . . Y L I  'U'Y."l"..LYL'"". 

In order to avoid these ambiguities, a precise (if somewhat ad hoc) definition of 
accidental degeneracy for the systems under consideration will be given as follows: a 
degeneracy will be called accidental if it is not due to the invariance under 'H or due 
to an invariance under an outer automorphism of Xt. For a detailed examination of 
accidental degeneracies see (81. In this section degeneracies which occur as a result 
of invariance under the outer automorphisms of 'H will be described. 

Consider first the diagonal elements of A ( E ) .  These will include, aside from the 
first two terms in (2.11), those where the representations R and p are singlets; in this 

:- tho mnrA:nn+o rpnr.=~nntn+inn 

t ?he second mse is included so as la encompass sy"e1ries such as time revenal; see section 4.1 
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case the Clehsch-Gordan coefficients are equal to one and U& = 1. This gives 

A(E; . 'a d i a d  = id,y [Co;A:>m(Qi)+ iCo;n,6,,, 
a 

+ o~RR;p)Q(SIRInICC')6,,,, 1 6,,,6,,, ( 3 4  
( R ; p )  =singlet J 

where the notation indicates that only those terms corresponding to R equal to a 
singlet under S and p singlet under N (i.e. pa = 0) should be included. There is 
no sum over k since the singlet representations are one dimensional. If there are no 
degeneracies aside from the one in m, the above expression is the complete result. 

The off-diagonal entries are 

(3.2) 

with the restriction that S' # S or n' # n, i.e. that (R; p )  are not singlets under 
31. ?b determine whether these contributions are present is complicated by the 
possible Occurrence of accidental degeneracies (as defined above). For simplicity it 
will be assumed that these do not occur; the only off-diagonal entries will then be a 
consequence of the invariance under outer automorphisms of the group 'H. 

In view of this last assumption the quantum number(s) C are irrelevant; henceforth 
such labels will not be displayed. 

Thus, with the above restrictions in mind, we can state that for any two degenerate 
states Is') and Is) such that they do not belong to the same irreducible representation 
of s and n, there will be an operator P, which commutes with the Hamiltonian H, 
~ L . c ' L c 1 a L c ~  a., U U L C l  avru,r,u'yr,w,llr U, I L ,  auu JUL.,, u1a1 1 ,a, - (d ,. lllr L I U L V L I I U I -  

phisms can be separated according whether they act on a simple factor subgroup of 31 
(class 1 automorphisms), or do not (class 2 automorphisms). Class 2 comprises both 
the automorphisms of N and those that correspond to the permutation of identical 
factor groups (whenever there are more than two identical factors in the decompo- 
sition of 31). A given system can be invariant under both classes of automorphisms 
simultaneously. 

3.1. Class 1 
For automorphism of a simple factor group of S the Hermitian operator P is 
determined by the action of the automorphisms on the irreducible representation 
of the factor group under question carried by the state Is). This, in its turn, is 

thus [5], P2 = 1 for E,, SO(%), n 2 5 and SU(n  + l ) ,  n 2 2. For all other 
cases P = 1, except for S 0 ( 8 ) ,  where P3 = 1. 

2 correspond to com- 
plex conjugation of the generators; therefore if, for example, s = SU(n)  with n 2 3, 

nn-nm+ni m- -..tn- n..+n.-.--L:-̂ ri n C  II nir t  o...-h rhnr DI-\ - I-,\ 'PLn n..tn--r 

>-----I__.. L.. .L̂  ^P^_& -e &L_ L?-- -- ...- ̂̂--̂ "--..A:.." r%-,-:- A:.."--... uerern~ineu vy rile e ~ i e ~ r  UI me aururlwrprumi UII L ~ G  w~rc~yur~urrig UYILAU~ u~agxa~u, 

The automorphisms of SU(n 2 3) and SO(4n + 2), n 
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then degeneracies will occur provided R c S@S. For S 0 ( 4 n ) ,  n 3, the automor- 
phism corresponds to the exchange of two real fundamental (spinor) representations. 
Finally, SO(8)  automorphisms have, aside from the previous exchange of the two 
spinor representations, also an automorphisms which interchanges the defining and a 
spinor representations. 

Given a Hamiltonian invariant under this type of transformation the determination 
of (3.2) is straightfomrd from group theory: the group automorphisms determine 
the degenerate irreducible representations, while the Clebsch-Gordan coefficients are 
determined using, for example, the method of [6]. An example of this procedure is 
presented in section 4.2 below. 

3.2. Clnss 2 
Assume now that P is an automorphism of N .  For U ( 1 )  the only outer auto- 

generator). Therefore the action of P is given by N ,  + cm N , ,  ea = fl .  This type 
of degeneracies include those resulting from invariance under space, time or charge 
inversion in many physically interesting systems; the. degenerate states correspond to 
{na} and {nb = e..,} (no sum over a). 

There is however the possibility that H is invariant under a permutation of the 
N e ,  denoted by N ,  + Npc,,. If this is the case then the degenerate states correspond 
{ n e }  and {nh = eanpca,}. This case will be considered below in section 4.1. 

The last type of automorphism occurs when the group S has identical factor 
groups. In this case P corresponds to the exchange of the corresponding groups and 
the action on the states corresponds to the exchange of the corresponding irreducible 
representations. States thus related, however, do not contribute to (3.2), as is proven 
next. 

Suppose that -t has two identical simple factors with basis {Qi} and { Q r }  sat- 
isfying [Gi,&] = 0. Just as in (2.1) the Q; transform as tensor operators under 
both these sets; let X and x be the corresponding matrices. Consider then the Jacobi 
identity 

which implies that the X and x commute. It follows that if a subset of the Q )  
carry a non-trivial representation for one factor, they carry a trivial representation 
for the other factor. Thus, when reduced .lo their irreducible transforming sets, the 
Q' take the form G @ 1 or 1 @ G; where G and G are irreducible tensor operators 
under the corresponding factors; since Qi and Qi are also of this form, we conclude 
that all generators of the group can he written thus. Now consider two states, 
IS. m; 8 !  "1.) and PIS? mi 1? a) = 18: mi S ?  m); where s and B label some irreducible 
representations (and m, m the states in them) and P is the permutation operator 
exchanging the factors in the group (other labels are suppressed for brevity); it is 
assumed that s # S. It follows that the matrix element of any generator contains 
a factor ( 8 , a  Is, m) (or its conjugate) which is zero. Therefore the corresponding 
contribution to (3.2) vanishes as claimed. 

mnrnhiwn & pniiivllent tg ~ ~ n l ~ . ~  mninantinn ( ip  cg @.p & n g ~  b. &on nf !he -~.,-~I..-.. ,-.-. 
"-a-- -I-.".--. -1.11 

O =  [ Q r ~ ~ Q i ~ Q ~ 1 1 + ~ Q i ~ ~ Q ~ ~ Q i l l + [ Q ~ ~ ~ Q r ~ Q i 1 1  = [ X i , x r l ~ ~ Q ;  (3.3) 

4. Examples 

The method described above for obtaining the adiabatic connection consists in first 
determining S and N together with the representations (R; p )  present in the Q;. 
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Then evaluating 0 using (2.8). Next the energy degeneracies should be found; and, 
linally, the non-vanishing Clebsch-Gordan coefficients must obtained. The results 
of these steps produce A("). This procedure will be applied to some illustrative 
examples. 

RI. Example I 
Consider first the case where 'Fl = N.  Then the connection is given by 

it being understood that n and n' correspond to degenerate states. 
This situation is realized when H' is a function of the Cartan generators of G 

14, 91. For simplicity it will be assumed that all the Cartan generators are present in 
H', and that there are no accidental degeneracies. In this case the {Q'P)} are the 
roots of g, so that the numbers pa correspond to the elements of the root associated 
with Q ( p )  (there is no label R since there is no S). Moreover H will also commute 
with the Casimir operators for G and the states can be labelled by their weight and 
Casimir eigenvalues. A simple calculation shows that in this case [5] 

where the integers p and q depend on n and p, and are determined by the condition 
Q(P)ln + pp) = 0 and Q ( - p ) l n  ~ qp) = 0 (there are no S, m labels since 'H = N). 
The conventions used are such that Q ( p ) t  = -Q(-P), so that (0:)' = 0 ; p .  

As a specific case assume G = S U ( 2 )  x SU(2)  and 'Fl = U ( l )  x U ( l )  with H 
invariant under any permutation of the factor groups. 'lb determine the connection 
we will use the following conventions: the generators of S U ( 2 )  are denoted by Ta, 
U = & O ,  with [T,,To] = &iT*, so that p = +l; and the corresponding U(1)  can 
be assumed to be generated by To. Using (2.8) with a spin of one representation of 
SU(2)  in terms of Euler angles $,e ,+  (in the convention of [lo]) gives 

de"0;  = dli, + d+cos B = r 

d B u O i  =--exp(i$)(&?-id+sinB) = --T. 
(4.3) 

1 1 

4 Jz 
The normalization used is trT,!T, = 26,,,, Ti, = -T-. The s ta te  for SU(2) are 
labelled by their Casimu eigenvalue j and thelr weight lj ,n), with In1 < j, then 
p = j - n ,  q = j + n. 

Subindices '1' and '2' will be used to identify the two U ( l )  factors and the 
corresponding SU(2)  parent groups; the states are denoted by ~ j l , n l ; j z , n z ) .  Since 
T* change the corresponding ni by f l ,  and since the only degeneracies are assumed 
to be produced hy the outer automorphisms of E, it follows that there are three 
types of subspaces relevant for the evaluation of A ( G )  (the labels jl,z are fixed and 
omitted for brevity): 

(a) The one dimensional space W ( n l , n z )  = {1n1,n2) : lnil # 4, i = 1,2}; the 
corresponding the expression for the adiabatic connection can be obtained directly 
from (3.1) yielding 
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(4.4) 

@)The two dimensional spaces Xl(n,) = { I f  i , y 2 )  : 1n21 # i} and X 2 ( n l )  = 
{lnl,k1/2) : lnll # l /Z} .  For X l ( n 2 )  the adiabatic connection is, from (4.1) 
and (4.2) 

Similar I y 

where r i ,  Ti are given in (4.3). 
(c) The four dimensional space Y = {1n1!n2) : in;! = $! i = l i Z ! ;  again from 

(4.1) and (4.2) we obtain 

-; (rl t r2) ( j ,  + + P 2  ( j ,  + $)Tl 0 
(j, + +IT; -4 (r, - r2) 0 ( j ,  + $)TI 
(j, + w: 0 icr1- r2) ( j 2  + ;IT2 

( j ,  + ;IT: ( j 2  + fv; ; (r, + r,) ( 0  

A(')[y] = 

where r i ,  T i  are given in (4.3). 

The adiabatic connections for Xi are identical to the one where G = SU(Z), 
31 = U ( l ) ,  and has been studied in detail in [ll, 31. It is included here to illustrate 

directly from the group structure of the problem. A simple realization of this situation 
corresponding to W and X I  with n2 = 0 is the case of an atom in the presence of 
an external electric or magnetic field, which rotates slowly in time with constant 
magnitude [U]; 'H = U(1) then corresponds to rotations around the field's axis. If 
the atom has an even number of electrons, then n1 is an integer so that, barring 
accidental degeneracies, the connection is diagonal and equal to -nlT. However, 
if the atom has an odd number of electrons then nl is a half-odd integer and 
the connection can acquire off-diagonal elements. Such is the case when Kramers' 
degeneracy is present in an atom' with magnetic quantum number equal to f. 'hen 
the above results for X l ( n 2  = 0) determine the corresponding connection, which 
coincides with the expression found by Mead [ll]. 

4.2. Erampie 2 
'Ib illustrate the effect of invariance under the outer automorphisms of s, consider 
the case where g = S U ( N )  and 'H = SU(M),  ( M  < N - 1). The representations 
R carried by the Q; are N - M copies of the hndamental of SU(M) (denoted by 

the use of (2A) and a!so to demonstrate that the results of [3! can be obtained 
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M), N - M copies of its complex conjugate (denoted by M), and ( N  - M ) *  S U  (M) 
singlets (denoted by 1). For any representation S of S U ( M )  the action of P is 
simply to replace it by its complex conjugate: PS = S, therefore the offdiagonal 
elements of A(G) will be non-zero if and only if S 8 S contains 1, M or M. Using a 
tensor realization of S shows that the last two cases are impossible for M + 3, and 
that S 8 S can contain singlets only if S is real. It then follow that (for M # 3) 
(3.2) vanishes while (3.1) gives 

(4.7) 

where the second sum is w e r  the ( N  - M ) 2  singlet representations carried by the 
4& and vanishes except for reai S. The reduced matrix elements are zero unless S 
is real (in which case they are purely imaginary). 

For M = 3 (N 2 4) the diagonal elements are again given given by (4.7); 
but now there is an off-diagonal contribution. Let S, be the SU(3)  representation 
characterized by the following Young tableaux 

p boxes p + 1  baxes . L 

,. (4.8) 

Then the off-diagonal elements are non-vanishing when R = 3, S = S,, S' = s,, 
and an werbar indicates the complex conjugate representation. In this case we have 
v i  

2,  s s,, S' sp; j dyhp"OtP,S * y h p  fi."dlfiyhpfitl! ren*s-rs--tnt;nn yW'.L.YLL".., 

= 1 and (3.2) becomes 
PI I 

ak = id@'J@$[3ikl) 

or its complex conjugate. For example, if S, = 3 then 

(4.9) 

and 

(4.10) A ( G ;  nowdiag) - 
* I *  - z % % k d @ k I f i  (S, = 3) 

k 

The forms 0, cannot be explicitly obtained in general, but can be evaluated given 
any particular trajectoly g( t )  in (2.4). 
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4.3. Erample 3 
As a final example take the case p = SO(3,l)  and 'If = S = SO(3); the language 
of special relativity will be used. It will be assumed that there are no degeneracies 
other than those corresponding to 71, so that only the case S' = S needs to be. 
considered. 

The generators of S O ( 3 , l )  can be segregated into boost generators ISi (i = 
1,2,3),  corresponding to the Q(R) ,  and rotation generators J ,  (i = 1,2,3),  corre- 
sponding to the Qi. The boosts transform as vector operators under rotations, i.e. 
R = l .  

Using the fact that for SO(3) u t s  = 1, then for R = 1, we obtain 

(4.11) 

where S(S + 1) and S'( S' + 1) are the eigenvalues of the SO(3) Casimir operator 
for the corresponding irreducible representation, thus S, S' label the representation; 
they are both integers. 

The calculation of 0 using (2.8) is simplified by noting that g is defined up to an 
SO(3) transformation, thus we can take 

(4.12) 

Using for D(') the fundamental representation of SO(3,l)  realized as 4 x 4 ma- 
trices in the conventions of [12], together with a polar parametrization of m (whose 
components are m,) 

m =  j 1 ( s i n 8 c o s ~ , s i n O s i n ~ , c o s 8 )  (4.13) 

yields, after a straightforward use of (2.11) 

A(G)  = iA(')(w,Q,) (4.14) 

In this equation AcS) denotes the Sth irreducible representation of S 0 ( 3 ) ,  and the 
one forms w are 

w = WT t 4 s  CT 

w T = ( c o s h p - l ) ( d d Q - b  s i n o d d )  (4.15) 
C, .. = [+ d u  + sinh u (6 dEJ + b sin 8 dd)] 

where Q, = Q(.S)/J=. 
The nomenclature is chosen to indicate the close relation to the quantities found in 

the calculation of the Thomas precession [12]: wT is (minus) the Thomas frequency, 
while CT is the Thomas boost. More precisely, if 0 and 4 denote the polar angles 
of the boost velocity U and t anh  j~ its magnitude, then a boost with a velocity -U 
followed by another boost to velocity U + d u  equals a boost to velocity CT followed 
by a rotation by an angle wT. 

This example is relevant for the study of a particle under the action of a slowly 
varying (in time) time-like electromagnetic potential. It also provides the correct 
phase when considering the adiabatic rotation of fermionic states [13]. 
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5. Conclusions 

It has been shown that elementary group theory is sufficient to completely describe the 
adiabatic connection for the systems under consideration. The connections obtained 
are determined by the group structure up to a set of reduced matrix elements which 
depend on the details of the Hamiltonian. Therefore we can organize these models 
in families according to the group (and degeneracies). This is summarized by the 

The examples show that the method proposed here is amenable for practical 
calculations. Of course, detailed properties of the various representations of the 
group G are needed in order to obtain concrete results but, given these, obtaining 
the adiabatic connection is straightfonvard. 

The last term in expression (2.11) is determined by the representations carried 
by the 9;. These are simple in most cases of physical interest: for example, if 
G = SU(N)  and H = SU(M),  then, as mentioned in section 4, the Q; carry 
the fundamental representation of SU(  M ) ,  its complex conjugate, and the singlet 
representation. Still the author knows of no general description of the representations 
R appearing in the Q;. 

--..... :-- 07 4 4 ,  .L:̂  ..^^^_9^ -":- --"..S. cyuauvu (L .LL, ,  ~iio p a p  3 uau, IC~JUII .  
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