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Abstract. The construction of the adiabatic connection is studied in the case where
the symmetry of a Hamiltonian is broken explicitly by a slowly varying perturbation.
The type of time variation of the perturbation corresponds to the one generated by
the symmetry group of the unperturbed Hamiltonian. IL is proven that the adiabatic
connection for this type of system is completely determined by the group structure, up to
a set of reduced matrix elements: systems with the same symmetries will have adiabatic
connections differing at most in these reduced matrix elements. Several examples are
detailed.

1. Introduction

The description of the adiabatic approximation, as improved by Berry's formalism
[1], provides a framework which relates a variety of subjects ranging from field-theory
anomalies [2] to the dynamics of an atom in a slowly varying electromagnetic field [1].
In the present paper this formalism will be applied to a class of Hamiltonians which
are of interest both phenomenologically and because of their mathematical properties.
Such Hamiltonians consist of a time independent term H,, invariant under a semi-
simple compact Lie group G, together with a slowly varying perturbation, H’ which
is invariant under a subgroup ¥ C G. The time variation of H’ is assumed to be
sufficiently slow for the adiabatic approximation to be valid.

This class of Hamiltonians is characteristic of systems interacting with an external
field. In many such cases I’ is a function of a set of irreducible tensor operators
under G [3]; we shall not, however, assume any specific form for H’ and rely solely
on the above mentioned group properties for the subsequent caiculations.

The time dependence in H' will be assumed to be generated by a (sufficiently
slow) G rotation [4]; this allows for a compact expression for the adiabatic connection.
Moreover, as will be seen below, the adiabatic connection is uniquely determined
up 1o a set of reduced matrix elements; so that models with the same group and
degeneracies will have connections differing at most in these reduced matrix elements.
This fact was observed in [3] for the case of ¢ = SU(2), X = U(1) using topological
arguments. As will be proven, this is a completely general feature which can be
obtained using elementary group theory.

Though several of the results derived below have appeared previously in the liter-
ature, the method of calculation here described, together with the general expression
for the adiabatic connection are, as far as the author is aware, new.
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This paper is organized as follows. In the next section the group structure is
developed to the point where an expression for the adiabatic connection amenable
for caiculations is obtained. Section 3 briefly describes some interesting types of
degeneracies. Several examples are worked out in section 4, while comments and
conclusions appear in the last section.

2. Hamiltonian and adiabatic connection

As mentioned above the Hamiltonians under consideration are of the form H, + H'.
H, is time independent and invariant under a compact semi-simple Lie group G,
while H’ is time dependent and invariant under a subgroup X C G. Below we will
orielly describe the pra‘pemea associated with this BIOUp siruciure; il the following
D) will always denote the £th irreducible representation of G.

Let g be the algebra of G and h that of 7; since G is compact, the corresponding
structure constants are completely anti-symmetric and the Cartan metric can be taken
to be proportional to the identity [5]. The basis for h will be denoted by {Q.}, and
the basis for g — h by {Q/}; small case Latin indices from the end of the alphabet,

T, &, eIC, will denote the gpnprnrnrc for Iy mp-ta] Latin indices from the middle of

the alphabet, I, J, etc. will denote the generators of g — h. It follows that
[Q-, Q7) = -1 Q% 2.1

where no term proportional to Q, appears on the right—hand side due to the anti-
symmetry of the structure constants, and because the Q0 “r close into and alsubra From
the Jacobi identity it follows that the matrices A, carry a representation (reducible
in general) of h. Therefore the Q' transform as (reducible) tensor operators under
‘H. Since G is semi-simple, it follows that the representation carried by the A, is
fully reducible [5]; the basis {Q%} can then be replaced by sets of irreducible tensor
operators under G [7]; this fact will be used below.

Reguiring (' to be commnact allows the de(‘nmnmnf on h = s @ n, where s 8 a

equirin compact the decomposition h
semi-simple algcbra and n is Abelian [7]. Let S and N be the groups generated by s
and n respectively; the irreducible representations of § will be labelled by the letters
R, S,etc. and those of A by p, o,etc.

Denote by 7, the anti-Hermitian generators of the unitary representation of G
in the Hilbert space of the system, so that a group element g corresponds to an
operator U(g) = exp(T,6™). Using this and the above properties of G implies that

the generators T, can be decomposed into

{Q,}: basisofs
(N,}: basisofn 2.2)
{Q4%)} : basis of g—h

where, for simplicity, the symbols Q;, N, etc. are used to represent both the abstract
Lic algebra elements and their realization as operators. The previous basis of g—h has
been replaced, as mentioned before, by the set {Q(kR“’)}, which are irreducible tensor
operators under S and A (k labels the element of the Rth irreducible representation
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under §) :

[, Q) = AL Q{F
2.3)

where A denotes the Rth imreducible representation of S, and the p, are real
numbers. As previously mentioned, the irreducible representations of § will be
labelled by the letters R, S, etc. and those of A7 by p,o.etc; the letters L,k in
the above equation denote the indices of the matrices A(R), and they also label
the elements of the ( R; p) irreducible representation; the summation convention is
implied.

As mentioned in the introduction, the type of perturbations H’(t) which will be
considered are of the form [4]

H'(®)=U@H U@  g=4g(1) g0)=e 249

where ¢(t) corresponds to a given curve in G, and e is the identity in G. The
cigenstates of the Hamiltonian for ¢ = 0, denoted by |s), can be classified according
to their transformation properties under § and A,

ls) = [R,m;n; () 2.5)

where R denotes the imreducible representation of S, m the state within this ir-
reducible representation; n denotes a set {n,}, the eigenvalucs of the N, (the
generators of n); and ¢ summarizes the remaining quantum numbers required to
uniquely specify |s}.

The states of the time dependent Hamiltonian are [4] U(g)|s), g = g(t), so that
the adiabatic connection, denoted by A(}, is given by

i(s'{U(g)1dU ()} 1s) (2.6)

with the restriction that the states |s} and |s'} are degenerate. This expression for
A can be simplified by noting that

A}

Ulg)tdU(g) = @rd6*T, ©= [%] @7

where the matrices ¢ generate the adjoint representation of G. The matrix © can be

et AL

expressed in terms of any (unitary) irreducible representation of G by the relation
4603 = — u{DO(T,) DO(9)1d DO(g))} 2.8)
L
where the normalization constant x, is determined by

tr{ DT, ) DINT,)} = x,6}

Thus the evaluation of A(¥) requires the matrix elements of the generators 7,.
These are trivial to obtain for the elements of s and n; for the elements of g— h, such
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matrix elements involve the Clebsch-Gordan coefficients of M to which we now turn.
Following Cornwell and van den Broek [6] these coefficients are specified as follows:
the product of two irreducible representations of a group, S® S’, will contain a given
irreducible representation 2 a number vg 5+ times, so that the product is expressed
as

, S & R « 5
X =3 (m |k )*PE;?MSJ 0<ag il 29)
m,m?!

where x,  and 4 denote the basis vectors of the corresponding irreducible repre-
sentations; and the complex numbets

are the Clebsch—Gordan coefficients.
With these preliminaries the required matrix elements are given by

(8", m!sns €| Q; 1S, myms ) = ALD (Q:)65156,1m 60
(S’ m"; s | N | S, myn; () = in,6g.66,.,90

nog
(2.10)
(S, m's ' ¢ QYO IS, mimi ¢)
° vSe
. S R S, ! f
= Sntomr D, (m k ‘m, “)Q(SS'IRalnn 16¢")

-
[s==31 :

where A(S) denotes the Sth irreducible representation of S, and @ denotes a reduced
matrix element and, 6, , ., vanishes unless n,+p, = n}, for all a. The (generalized)
Wigner—Eckart theorem [6] was used in obtaining the last expression .

Substituting these results in (2.6) gives

g : i 5 =
Ag'.g = id§* l:z ewAEn‘)m(Qi)énn'(SSS’
i

+ i Z @funaém.m 655;6,““, + Z 6n+p'n,®££R,k];p)
: Rk.p

R
V5.8t

x ;—1 (Ti ff li "‘)Q(ss’|Ra|nn'|cc') . 2.11)

The range of the index v in (2.8) has been separated according to the classification
(2.2); the labels (S, m;n;¢) refer to the state |s), while their primed counterparts
refer to |s'); the rest of the notation is self evident.

Equation (2.11) is the main result of this paper, the following considerations will
deal with simplifications of the above expressions under various assumptions. The
contributions to A(9) which appear only when $* = S and n), = n, will be labelled
‘diagonal’; the remaining terms will be called ‘off-diagonal’.
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Models having the same group structure (and degeneracies) will have adiabatic
connections differing only in the reduced matrix elements, so that we can talk about
families of models whose adiabatic connections are parametrized by the Q. The terms
Clebsch—Gordan coefficients will vanish in case the irreducible representation S” is
not contained in S ® R, or if, for every p, p, # n/, — n, for some q; in general,
however, these conditions are not satisfied.

It is also worth pointing out that the same expression will be valid for non-compact
groups in those special cases for which the generators of g — h are tensor operators
under h. It must also be noted that for non-compact groups the expression © in (2.8}
must involve the Cartan metric which in this case is not proportional to the identity.
An example where these remarks are relevant is the case where & = SO(3,1) and
‘H = S0O(3), which will be studied below.

The expression (2. 11) leads to simple results only in the specia] cases, the difficulty

haoina hnth tha aunliatinn nf tha radunad atriv ola to Y and nf tha
wuls ULt ul LI bﬂl)ll"ll WYL LIVIIE Ul Wiy ‘buuwu ‘llal‘M V‘Vl‘lvllw ¥ Q1M VI W

tensor ©. The explicit expression for © is available only when G is a product of
several SU(2) and U(1) factors. If we then consider only these cases, then the
determination of the reduced matrix elements is straightforward: H will also be a
product of SU(2) and U(1) factors and, therefore, the representation matrices A
are known explicitly; such a situation will be studied below. In contrast, when G is a
motre complicated group (excluding the non-compact partners of SU{2)), no explicit
expressions for A(%) are available.

To explicitly determine the reduced matrix elements one must first find the states
(2.5), and then use (2.10) to determine Q. The advantage of the procedure is
the usual one: one needs to evaluate the matrix elements for one state in a given
irreducible representation, the Clebsch—Gordan coefficients determine all the other
matrix elements. The Clebsch-Gordan coefficients can be obtained using standard
methods [6].

3. Degeneracies

The construction of the adiabatic connection requires the selection of all states corre-
sponding to a given energy. While in many instances he structure of the degeneracies
can be obtained by symmetry considerations, this is not always the case, and such ‘un-
explained’ degeneracics are commonly labelled ‘accidental’. This terminology is very
ambiguous; for example, the special degencracies present in the Coulomb problem
appear because the actual symmetry group is SO(3,1) [5], a fact not immediately

annarant tha rnnrdinats ranracantatinn
appaiviit il W8 CoOIGInatl LI LSLad LG LI,

In order to avoid these ambiguities, a precise (if somewhat ad hoc) definition of
accidental degeneracy for the systems under consideration will be given as follows: a
degeneracy will be called accidental if it is not due to the invariance under A or due
to an jnvariance under an outer automorphism of 1. For a detailed examination of
accidental degeneracies see [8]. In this section degeneracies which occur as a resuit
of invariance under the outer automorphisms of H will be described.

Consider first the diagonal elements of A®). These will include, aside from the
first two terms in (2.11), those where the representations R and p are singlets; in this

1 The second case is included so as to encompass symmetries such as time reversal; see section 4.1,
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case the Clebsch-Gordan coefficients are equal to one and »F ; = 1. This gives

w m'm

A 0 = idev >0l Al (G0 +iY 04,6,
i a

+ > @LR;”)Q(S|R|n|CC’)6m,,m] bmbsis (3.1)

(R;p) =singlet J

where the notation indicates that only those terms corresponding to R equal to a

singlet under § and p singlet under A (i.e. p, = 0) should be included. There is

no sum over k since the singlet representations are one dimensional. If there are no

degeneracies aside from the one in m, the above expression is the complete result.
The off-diagonal entries are

(¢, -di B) R, k];
As s non-dia| oY E 6n+p,n'e£.£ lie)
([R,k];p0)

yR
(S R[S a) ]

x ¥y QA SS | Ravlnn’lCCh) (3.2)
H \m k | ml } LY 1 1 ™2 IJ A Y x
a=1

with the restriction that S’ # S or n’ # n, ie. that (R; p) are not singlets under
H. To determine whether these contributions are present is complicated by the
possible occurrence of accidental degeneracies (as defined above). For simplicity it
will be assumed that these do not occur; the only off-diagonal entries will then be a
consequence of the invariance under outer automorphisms of the group H.

In view of this last assumption the quantum number(s) ¢ are irrelevant; henceforth
such labels will not be displayed.

Thus, with the above restrictions in mind, we can state that for any two degenerate
states |s’) and |s} such that they do not belong to the same irreducible representation
of s and n, there will be an operator P, which commutes with the Hamiltonian H,

P N R Y

gencrates an outer auLuunuxpumum of H Ity and such that P ].3’ = |o , The automor-
phisms can be separated according whether they act on a simple factor subgroup of H
(class 1 automorphisms), or do not (class 2 automorphisms). Class 2 comprises both
the automorphisms of A" and those that correspond to the permutation of identical
factor groups (whenever there are more than two identical factors in the decompo-
sition of H). A given system can be invariant under both classes of automorphisms
simultaneously.

3.1. Class 1

For automorphisms of a simple factor group of § the Hermitian operator P is
determined by the action of the automorphisms on the irreducible representation
of the factor group under question carried by the state |s). This, in its turn, is

i WP S V. JRgEP JOURPI R I PR, T . | T el dwa

UULCIIII]IIUU U)’ LIIU CieCt 01 Il’lU duLUlIlUIp[libl[l uIl lIlU UUIIC:!IJUHUIIIB Lynkin uldslaul,
thus [5], P =1 for E,, SO(2n), n > 5 and SU(n + 1), n > 2. For all other
cases P = 1, except for SO(8), where Pi=1.

The automorphisms of SU(n > 3) and SO(4n + 2), n > 2 correspond 10 com-
plex conjugation of the generators; therefore if, for example, s = SU(n) with n 2 3,
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then degeneracies will occur provided R C S® S. For 80(4n), n 2 3, the automor-
phism corresponds to the exchange of two real fundamental (spinor) representations.
Finally, SO(8) automorphisms have, aside from the previous exchange of the two
spinor representations, also an automorphisms which interchanges the defining and a
spinor r¢presentations.

Given a Hamiltonian invariant under this type of transformation the determination
of (3.2) is straightforward from group theory: the group automorphisms determine
the degenerate irreducible representations, while the Clebsch-Gordan coefficients are
determined using, for example, the method of {6] An example of this procedure is
presented in section 4.2 below.

3.2. Class 2
Assume now that P is an automorphism of A/, For U(1) the only outer auto-

morphism i eguivalent to complex conjugation (ie. to the change in sign of the
generator). Therefore the action of P is given by N, — ¢, V,, €, = £1. This type
of degeneracies include those resulting from invariance under space, time or charge
inversion in many physically interesting systems; the degenerate states correspond to
{n,}and {n), = ¢,n,} (no sum over a).

There is however the possibility that H is invariant under a permutation of the
N,, denoted by N, — Np . If this is the case then the degenerate states correspond
{n.} and {n; = e,np(,}. This case will be considered below in section 4.1.

The last type of automorphism occurs when the group S has identical factor
groups. In this case P corresponds to the exchange of the corresponding groups and
the action on the states corresponds to the exchange of the corresponding irreducible
representations. States thus related, however, do not contribute to (3.2), as is proven
next.

Suppose that — has two identical simple factors with basis {Q,} and {Q;} sat-
isfying [Q,—,Qr] = 0. Just as in (2.1) the Q) transform as tensor operators under
both these sets; let A and A be the corresponding matrices. Consider then the Jacobi
identity
0= [Qfa{Qia ’}']] + [Q;‘: {Qf{v QI_]] + [Q_’h [Qf': Q|1] = [)‘is AT]J’.J’c?:)' (33)
which implies that the A and X commute. It follows that if a subset of the QY
carry a non-trivial representation for one factor, they carry a trivial representation
for the other factor. Thus, when reduced 4o their irreducible transforming sets, the
Q' take the form G®1 or 1 ® G; where G and G are irreducible tensor Operators
under the corresponding factors; since @, and @ are also of this form, we conclude
that all generators of the group can be written thus. Now consider two states,
ls,m; s, m) and Pls, m;3,m) = |5, m; s, m}; where s and 3 label some irreducible
representations (and m, m the states in them) and P is the permutation operator
exchanging the factors in the group (other labels are suppressed for brevity); it is
assumed that s # 5. It follows that the matrix element of any generator contains
a factor (3,vn|s,m} (or its conjugate] which is zero. Therefore the corresponding
contribution to (3.2) vanishes as claimed.

4, Examples

The method described above for obtaining the adiabatic connection consists in first
determining S and A together with the representations (R; p) present in the Qf.
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Then evaluating © using (2.8). Next the energy degeneracies should be found; and,
finally, the non-vanishing Clebsch-Gordan coefficients must obtained. The results
of these steps produce A(S), This procedure will be applied to some illustrative
examples.

4.1. Example 1

Consider first the case where H = A. Then the connection is given by
AE) =100 [ 024 + T 8y @20 @
a [

it being understood that » and n' correspond to degenerate states.

This situation is realized when I/’ is a function of the Cartan generators of G
[4, 9. For simplicity it will be assumed that all the Cartan generators are present in
H’', and that there are no accidental degeneracies. In this case the {Q(?)} are the
roots of g, so that the numbers g, correspond to the elements of the root associated
with Q{) (there is no label R since there is no §). Moreover H will also commute
with the Casimir operators for & and the states can be labelled by their weight and
Casimir eigenvalues. A simple caiculation shows that in this case [5]

Qn,n+p) =ivVp (g+ 1)\/p,r, /2 4.2

where the integers p and ¢ depend on n and p, and are determined by the condition
Q@|n + pp) = 0 and Q~?)|n — gp} = 0 (therc are no 5, m labels since H = N).
The conventions used are such that QP = ~Q(-7), 5o that (©2)" = O]~

As a specific case assume ¢ = SU(2) x SU(2) and H = U(1) x U(1) with H
invariant under any permutation of the factor groups. To determine the connection
we will use the following conventions: the generators of SU(2) are denoted by T,
u = +,0, with [T, 7] = +iT,, so that p = +1; and the corresponding U(1) can
be assumed t0 be generated by 7. Using (2.8) with a spin of one representation of
SU(2) in terms of Euler angles 1,8, ¢ (in the convention of [10]) gives

d0°0° =dvy + dgcos@ =T
4.3)

46°0F = ——laexp(igb)(aﬂ —idésin 8) = ———T.

V2 V2

The normalization used is tr T} T, = 26, ,, Tl = —T_. The states for SU(2) are
labelled by their Casimir eigenvalue j and their weight |7, n), with |[n| < 7, then
p=j-n,q=j+n

Subindices ‘1’ and ‘2’ will be used to identify the two U(1) factors and the
corresponding STU(2) parent groups; the states are denoted by |j,, n,; j,, np). Since
T, change the corresponding n; by +1, and since the only degeneracies are assumed
to be produced by the outer automorphisms of X, it follows that there are three
types of subspaces relevant for the evaluation of A(®) (the labels j, , are fixed and
omitted for brevity):

(a) The one dimensional space W(n,,n,) = {|ny,ny) : In;| # 3, ¢ = 1,2}; the
corresponding the expression for the adiabatic connection can be obtained directly
from (3.1) yielding
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A(g)[w(nls ng)} = — Z n,; T, @4

i=1,2

(b) The two dimensional spaces X;(n,) = {| £ 3,7;) ¢ |ny} # 3} and Xy(n,) =
{lny,£1/2} : In,| # 1/2}. For X,(n,) the adiabatic connection is, from (4.1)
and (A2
mEEE NS

_%Fl -n,Uy (5 + %)Tl ) (4.5)

(j1+l)TI lFI—n2F2

A(G)[xl (n))] = (
Z

2

Similarly

T, —n.T, (G, + 5T
AP )= (22T ) “6)
(42 + E)Tz 70y —my [y
where I';, T, are given in (4.3).
(c) The four dimensional space ¥ = {|n,,n;) : |n| = 1, ¢ = 1,2}; again from
(4.1) and (4.2) we obtain

—3(Ti+Ty) G+ DT Gt HT, 0
A(g)[y] — (32 + %)TE ““';‘ Fl - F2) 0 (.71 + ‘;‘)Tl
(14T} 0 (I =Ty (4 + %)Tz
0 (L + 35T (Ga+35)Y5 (T +T,)

where I';, T, are given in (4.3).

The adiabatic connections for A, are identical to the one where G = SU(2),
‘H = U(1), and has been studied in detail in [11, 3]. It is included here to illustrate
the use of (2.11) and also to demonstrate that the results of [3] can be obtained
directly from the group structure of the problem. A simple realization of this situation
corresponding to W and X, with n, = 0 is the case of an atom in the presence of
an external electric or magnetic field, which rotates slowly in time with constant
magnitude [11]; H = U(1) then corresponds to rotations around the field’s axis. If
the atom has an even number of electrons, then n, is an integer so that, barring
accidental degeneracies, the connection is diagonal and equal to —n,I". However,
if the atom has an odd number of electrons then =, is a half-odd integer and
the connection can acquire off-diagonal elements. Such is the case when Kramers’
degeneracy is present in an atom' with magnetic quantum number equal to 1. Then
the above results for X,(n, = 0) determine the corresponding connection, which
coincides with the expression found by Mead [11].

4.2. Exampie 2
To illustrate the effect of invariance under the outer automorphisms of s, consider

the case where ¢ = SU(N) and X = SU(M), (M € N —1). The representations
R carried by the Q) are N — M copies of the fundamental of SU( M) (denoted by
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M), N — M copies of its complex conjugate (denoted by M), and (N - M)? SU(M)
singlets (denoted by 1). For any representation S of SU( M) the action of P is
simply to replace it by its complex conjugate: PS = S, therefore the off-diagonal
clements of A will be non-zero if and only if S ® S contains 1, M or M. Using a
tensor realization of S shows that the last two cases are impossible for M # 3, and
that 5 ® S can contain singlets only if S is real. It then follows that (for M # 3)
(3.2) vanishes while (3.1) gives

(N-M)?
AQ =id" x [T 0IAD. @0+ 3 OFQSIRsss @7
i R=1

where the second sum is over the (N — M)? singlet representations carried by the
Q7 and vanishes except for real S. The reduced matrix elements are zero unless S
is real (in which case they are purely imaginary).

For M = 3 (N 2> 4) the diagonal elements are again given given by (4.7);
but now there is an off-diagonal contribution. Let S, be the SU(3) representation
characterized by the following Young tableaux

p boxes p+ 1 boxes

[ [ ]

— 4.8)
Then the off-diagonal elements are non-vanishing when R =3, S = Sy, 8'= .§p,
orwhen R=3, §= 5, & = S ; where 3 denotes the fundamental representation,
and an overbar indicates the complex conjugate representation. In this case we have

3 —

vg, 5, =1and (3.2) becomes

(¢; non-diag) __ Sp 3 SP 1 _
AL —;m(m o T )QS,5,13)

(4.9)
@, = idg* D
or its complex conjugate. For example, if S, = 3 then
and
AL = N e @ /VE (S, =9) (4.10)
k

The forms &, cannot be explicitly obtained in general, but can be evaluated given
any particular trajectory g(t) in (2.4).
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4.3. Example 3

As a final example take the case ¢ = SO(3,1) and H = § = SO(3); the language
of special relativity will be used. It will be assumed that there are no degeneracies
other than those corresponding to H, so that only the case §' = S needs to be
considered.

The generators of SO(3,1) can be segregated into boost generators K; (i =
1,2,3), corresponding to the Q®), and rotation generators J; (i = 1,2, 3), corre-
sponding to the Q;. The boosts transform as vector operators under rotations, ie.
R=1.

Using the fact that for SO(3) u? s = 1, then for R = 1, we obtain

(S 1‘3 1) m+km; {;\fSim WSxm +1)/2
ok | /S5 +1)

+1
0
(4.11)

where S(S 4 1) and §'( S5’ + 1) are the eigenvalues of the SO(3) Casimir operator
for the corresponding irreducible representation, thus S, S’ label the representation;
they are both integers,

The calculation of © wusing (2.8) is simplified by noting that g is defined up to an
S0O(3) transformation, thus we can take

DY(g) = exp {Z m; DO (K.')} (412)

Using for D) the fundamental representation of SO(3,1) realized as 4 x 4 ma-
trices in the conventions of [12], together with a polar parametrization of m (whose
components are m;)

m = p (sin @ cos ¢, sin 8 sin ¢,cos §) (4.13)

2
"

yields, after a straightforward use of (2.11)
A@) =iaAG)(w;Q)) (4.14)

In this equation A'®) denotes the Sth irreducible representation of SO(3), and the
one forms w are

w= wr+ Qs Cr
wp = (coshu —1)(¢ dO ~ 8 sin 0 do) (4.15)
(p=[# du+sinhu (8 d0 + & sin 8 dg)]

where @5 = Q(5)//S(S +1).

The nomenclature is chosen to indicate the close relation to the quantities found in
the calculation of the Thomas precession [12]: wy is (minus) the Thomas frequency,
while (. is the Thomas boost. More precisely, if & and ¢ denote the polar angles
of the boost velocity v and tanh g its magnitude, then a boost with a velocity —v
followed by another boost to velocity » + dv equals a boost to velocity (. followed
by a rotation by an angle wr.

This example is relevant for the study of a particle under the action of a slowly
varying (in time) time-like electromagnetic potential. It also provides the correct
phase when considering the adiabatic rotation of fermionic states [13].
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5. Conclusions

It has been shown that elementary group theory is sufficient to completely describe the
adiabatic connection for the systems under consideration. The connections obtained
are determined by the group structure up to a set of reduced matrix elements which
depend on the details of the Hamiltonian. Therefore we can organize these models
in families aooorcling to the group (and degeneracies). This is summarized by the

G\.ludLIUll \4 LL}, I.lllb Pdpcl B umu1 ICBLIII.

The examples show that the method proposed here is amenable for practical
calculations. Of course, detailed properties of the various representations of the
group G are needed in order to obtain concrete results but, given these, obtaining
the adiabatic connection is straightforward.

The last term in expression (2.11) is determined by the representations carried
by the Q. These are simple in most cases of physical interest: for example, if
G = SU(N) and ¥ = SU(M), then, as mentioned in section 4, the Q) carry
the fundamental representation of SU( M), its complex conjugate, and the singlet
representation. Still the author knows of no general description of the representations
R appearing in the Q.

A nlse ncudndmeen o dn
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